National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Magnetic study of layered tetragonal compounds based on rare earths and uranium
Bartha, Attila ; Hrůzová Kratochvílová, Marie (advisor)
We have studied the interplay between the layered crystal structure and the 5f magnetism in uranium-based tetragonal compounds UnTIn3n+2. Sin- gle crystals of U2RhIn8, URhIn5 and UIn3 were prepared by In self-flux method. The novel U2RhIn8 compound adopts the Ho2CoGa8-type struc- ture with lattice parameters a = 4.6056(6) ˚A and c = 11.9911(15) ˚A. The behavior of U2RhIn8 strongly resembles that of related URhIn5 and UIn3 with respect to magnetization, specific heat and electrical resistivity except for magnetocrystalline anisotropy developing on stacking composition in the series UIn3 vs. U2RhIn8 and URhIn5. U2RhIn8 orders antiferromagnetically below TN = 117 K and exhibits slightly enhanced Sommerfeld coefficient γ = 47 mJ·mol−1 ·K−2 . TN increases with increasing c/a ratio in contrast to the behavior of their CenTIn3n+2 counterparts. Magnetic field leaves the value of the Néel temperature of URhIn5 and U2RhIn8 unaffected up to 9 T. On the other hand, TN increases with applied hydrostatic pressure up to 3.2 GPa with the ∂TN/∂p coefficient resembling URhIn5 and UIn3. Ther- mal expansion of U2RhIn8 reveals a hysteretic behavior of the antiferromag- netic transition pointing to its 1st -order character. The magnetic structure of URhIn5 obtained from neutron diffraction propagates with k = (1 /2, 1 /2, 1 /2) and the...
Peculiarities of magnetism on the verge of ferromagnetic ordering
Opletal, Petr ; Prokleška, Jan (advisor) ; Nhu-Tarnawska, Hoa Kim Ngan (referee) ; Veis, Martin (referee)
This thesis focuses on the study of magnetic properties of three 5f electron itinerant ferromagnets UCo0.990Ru0.010Al, UCoGa and URhGa and investigation of their phase diagrams. The single crystals of high-quality were prepared by Czochralski method for all three compounds. The physical properties at ambient pressure were studied by macroscopic methods (magnetization, electrical transport and heat capacity measurements) and also by magnetic force microscopy (MFM). The measurements were done under various external conditions (high pressure, low temperatures, high magnetic field). Through all these measurements and external conditions we investigated the interesting physical properties and the ferromagnetic phase diagrams. Effect of different conditions during the preparation and the thermal treatment on UCoGa was studied on two different single crystals. We show that annealing leads to improved quality of samples and the gallium evaporation from the melt during the growth leads to lower quality in parts of the ingot closer to melt. MFM images of UCoGa below the ordering temperature show domain branching and narrow magnetic domains wall made only of neighboring atoms with opposing moments. We have grown first ever single crystal of URhGa with ferromagnetic ordering temperature TC = 41 K. Anomalous maximum in...
Magnetic study of layered tetragonal compounds based on rare earths and uranium
Bartha, Attila ; Hrůzová Kratochvílová, Marie (advisor)
We have studied the interplay between the layered crystal structure and the 5f magnetism in uranium-based tetragonal compounds UnTIn3n+2. Sin- gle crystals of U2RhIn8, URhIn5 and UIn3 were prepared by In self-flux method. The novel U2RhIn8 compound adopts the Ho2CoGa8-type struc- ture with lattice parameters a = 4.6056(6) ˚A and c = 11.9911(15) ˚A. The behavior of U2RhIn8 strongly resembles that of related URhIn5 and UIn3 with respect to magnetization, specific heat and electrical resistivity except for magnetocrystalline anisotropy developing on stacking composition in the series UIn3 vs. U2RhIn8 and URhIn5. U2RhIn8 orders antiferromagnetically below TN = 117 K and exhibits slightly enhanced Sommerfeld coefficient γ = 47 mJ·mol−1 ·K−2 . TN increases with increasing c/a ratio in contrast to the behavior of their CenTIn3n+2 counterparts. Magnetic field leaves the value of the Néel temperature of URhIn5 and U2RhIn8 unaffected up to 9 T. On the other hand, TN increases with applied hydrostatic pressure up to 3.2 GPa with the ∂TN/∂p coefficient resembling URhIn5 and UIn3. Ther- mal expansion of U2RhIn8 reveals a hysteretic behavior of the antiferromag- netic transition pointing to its 1st -order character. The magnetic structure of URhIn5 obtained from neutron diffraction propagates with k = (1 /2, 1 /2, 1 /2) and the...
Studium magnetismu vrstevnatých tetragonálních sloučenin na bázi vzácných zemin a uranu
Bartha, Attila ; Hrůzová Kratochvílová, Marie (advisor) ; Prokleška, Jan (referee)
We have studied the interplay between the layered crystal structure and the 5f magnetism in uranium-based tetragonal compounds UnTIn3n+2. Sin- gle crystals of U2RhIn8, URhIn5 and UIn3 were prepared by In self-flux method. The novel U2RhIn8 compound adopts the Ho2CoGa8-type struc- ture with lattice parameters a = 4.6056(6) ˚A and c = 11.9911(15) ˚A. The behavior of U2RhIn8 strongly resembles that of related URhIn5 and UIn3 with respect to magnetization, specific heat and electrical resistivity except for magnetocrystalline anisotropy developing on stacking composition in the series UIn3 vs. U2RhIn8 and URhIn5. U2RhIn8 orders antiferromagnetically below TN = 117 K and exhibits slightly enhanced Sommerfeld coefficient γ = 47 mJ·mol−1 ·K−2 . TN increases with increasing c/a ratio in contrast to the behavior of their CenTIn3n+2 counterparts. Magnetic field leaves the value of the Néel temperature of URhIn5 and U2RhIn8 unaffected up to 9 T. On the other hand, TN increases with applied hydrostatic pressure up to 3.2 GPa with the ∂TN/∂p coefficient resembling URhIn5 and UIn3. Ther- mal expansion of U2RhIn8 reveals a hysteretic behavior of the antiferromag- netic transition pointing to its 1st -order character. The magnetic structure of URhIn5 obtained from neutron diffraction propagates with k = (1 /2, 1 /2, 1 /2) and the...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.